Symmetry and structure of SrTiO3 nanotubes.
Название публикации:
Symmetry and structure of SrTiO3 nanotubes.
Тип:
Публикация
Выходные данные публикации:
IOP Conference Series: Materials Science and Engineering, 2011, -V. 23, -Num. 1, P. 012012
Дата публикации:
2011-02
Аннотация:
<p style="font-size: 1.2em; margin: 0.25em 0px 0.75em; line-height: 1.35em; color: rgb(0, 0, 0); font-family: Arial, Helvetica, Verdana, sans-serif;"><span style="font-size:12px;">The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group <i>L</i> = <i>ZP</i>(a product of one axial point group <i>P</i> and one infinite cyclic group <i>Z</i> of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO<span style="vertical-align: baseline; position: relative; top: 0.25em;">3</span> nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector <b>L</b> =<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span><b>a</b> + <i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span><b>b</b> and chiral vector <b>R</b> = <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span><b>a</b> + <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span><b>b,</b> (<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>, <i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>, <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span> and <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span> are integers). The nanotube of the chirality (<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>) is obtained by folding the (001) slabs of two- layers (with the layer group P4<i>mm</i>) and of three layers (with the layer group P4/<i>mmm</i>) in a way that the chiral vector <b>R</b> becomes circumference of the nanotube. Due to the orthogonality relation (<b>RL)</b> = 0, <i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>/<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span> = −<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>/<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span> i.e. SW nanotubes with square morphology are commensurate for any rolling vector <b>R(</b><i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>). For SW (<i>n</i>,0) NTs the line symmetry groups belong to family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>) and are <i>n</i>/<i>mmm</i> or <img align="MIDDLE" alt="" src="http://ej.iop.org/images/1757-899X/23/1/012012/mse11_23_012012eqn1.gif" /> for even and odd <i>n</i>, respectively. For SW (<i>n</i>,<i>n</i>) NTs the line symmetry groups (2<i>n</i>)<span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>n</i></span>/<i>mcm</i> belong to family 13 (<i>T</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2<i>n</i></span><span style="vertical-align: baseline; position: relative; bottom: 0.5em;">1</span> <i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>).</span></p>
<p style="font-size: 1.2em; margin: 0.25em 0px 0.75em; line-height: 1.35em; color: rgb(0, 0, 0); font-family: Arial, Helvetica, Verdana, sans-serif;"><span style="font-size:12px;">The line symmetry group of a double-wall nanotube is found as intersection <i>L</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span> = <i>Z</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span><i>P</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span> = (<i>L</i> <img align="baseline" alt="bigcap" src="http://ej.iop.org/icons/Entities/bigcap.gif" /> <i>L'</i>) of the symmetry groups <i>L</i>and <i>L'</i> of its single-wall constituents as earlier considered for DW CNTs. The symmetry group of DWNT (<i>n</i>,0)@<i>M</i>(<i>n</i>,0) belongs to the same family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>) as its SW constituents. The symmetry group of DWNT (<i>n</i>,<i>n</i>)@<i>M</i>(<i>n</i>,<i>n</i>) depends on the parity of <i>M</i>. For DW NTs with odd <i>M</i>, the line symmetry groups are the same as for their SW constituents and belong to family 13 (<i>T</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2<i>n</i></span><span style="vertical-align: baseline; position: relative; bottom: 0.5em;">1</span><i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>). For even <i>M</i>, the rotations about screw axis of order 2<i>n</i> are changed by rotations around pure rotation axis of order <i>n</i> so that DW NT line symmetry groups belong to family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>). Commensurate STO DWNTs (<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,0)@(<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>,0) and (<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>, <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>)@(<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>,<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>) belong to family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>) with <i>n</i> equal to the greatest common divisor of <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span> and <i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>.</span></p>
Номер работы в РЦ ВЦ:
Ссылка на публикацию: